Characterization of low resolution images in rgb led matrix. an electronic modeling under free tools
Main Article Content
Abstract
The processing of two-dimensional chromatic images of low resolution is based on principles of mathematical representation of coordinates in a Cartesian plane, where functions with position variables (x and y) are used to model the illumination intensity of each pixel, based on the combination of each primary color: red, green and blue (RGB). It should be mentioned that the resolution depends directly on the number of pixels processed, which is why, for the execution of the present investigation, low resolution test images have been used in order to be represented in a size of 64 x 64 pixels.
In this sense, the present work covers initially the processes of conceptualization of the electronic model based on a bibliographic analysis of the free hardware platforms, mainly of the Arduino embedded system and its different shields or complementary elements, then the process of mathematical representation of each of the pixels of the images selected by the intensity scales for each primary color (Red, Green and Blue), which are then incorporated into the coding of the electronic system under Language C; Finally, the images are reproduced in RGB Led arrays, where each pixel is a Led (64x64).
Downloads
Article Details
Con la finalidad de contar con un tipo de licencia más abierta en el espectro que ofrece Creative Commons, a partir de diciembre de 2022 desde el número 27, AXIOMA asume la Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0(CC BY-NC-SA 4.0). Tanto el sitio web como los artículos en sus diferentes formatos, reflejan esta información.
Hasta el mes de noviembre de 2022 con el número 26, la revista AXIOMA asumió una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0). Los artículos contenidos en cada número hasta el 26, cuentan con esta licencia y su descripción se conserva en el portal de nuestra revista.
Atribución-NoComercial-SinDerivadas
CC BY-NC-ND
AXIOMA- Revista Científica de Investigación, Docencia y Proyección Social
References
Arduino - Home. (2018). Recuperado 1 de abril de 2018, a partir de https://www.arduino.cc/
Aurich, pixelsmart A. fuer neue M. (2015, septiembre 6). • Ojos y visión | gafasyvision.com. Recuperado 30 de marzo de 2018, a partir de https://www.gafasyvision.com/ojos-y-vision/
Banzi, M., y Shiloh, M. (2014). Getting Started with Arduino: The Open Source Electronics Prototyping Platform. Maker Media, Inc.
Beltrán, F. F. (2011). El copyright en cuestión: Diálogos sobre la propiedad intelectual. Universidad de Deusto.
Bimbo, A. (Ed.). (1997). Image Analysis and Processing: 9th International Conference, ICIAP’97, Florence, Italy, September 17-19, 1997, Proceedings, Volume II. Berlin Heidelberg: Springer-Verlag. Recuperado a partir de //www.springer.com/us/book/9783540695868
Calderón M. (2017). Pinterest. Recuperado 15 de marzo de 2018, a partir de https://www.pinterest.com.mx/pin/540924605227198239/
Chung B. (2017). Pro Processing for Images and Computer Vision with OpenCV - Solutions for Media Artists and Creative Coders | Bryan WC Chung | Springer. Recuperado 1 de abril de 2018, a partir de https://www.springer.com/us/book/9781484227749
Creative Commons — Attribution-ShareAlike 3.0 Unported — CC BY-SA 3.0. (s. f.). Recuperado 5 de marzo de 2018, a partir de https://creativecommons.org/licenses/by-sa/3.0/
Gibb, A. (2014). Building Open Source Hardware: DIY Manufacturing for Hackers and Makers. Addison-Wesley Professional.
Hadhazy, Adam. (2015). ¿Cuáles son los límites de la visión humana? Recuperado 31 de marzo de 2018, a partir de http://www.bbc.com/mundo/noticias/2015/08/150810_vert_fut_vision_limites_lp
Kremers, J., Baraas, R. C., y Marshall, N. J. (Eds.). (2016). Human Color Vision. Springer International Publishing. Recuperado a partir de //www.springer.com/la/book/9783319449760
Lasance, C. J. M., y Poppe, A. (2013). Thermal Management for LED Applications. Springer Science y Business Media.
Marković, D., y Brodersen, R. W. (2012). DSP Architecture Design Essentials. Springer US. Recuperado a partir de //www.springer.com/us/book/9781441996596
Mesa, R. R., y Rivero, P. T. (2015). Óptica para el cirujano faco-refractivo: Monografías SECOIR. Elsevier España.
Montero, A. C. (2009). Electrónica. Editex.
Muñoz, V. J. E. (2012). Aprendiendo a programar paso a paso con C. Vicente Javier Eslava Muñoz.
Ozcelik, Z., Tastimur, C., Karakose, M., y Akin, E. (2017). A vision based traffic light detection and recognition approach for intelligent vehicles. En 2017 International Conference on Computer Science and Engineering (UBMK) (pp. 424-429). https://doi.org/10.1109/UBMK.2017.8093430
Paco (2016). Coparoman: Led RGB. Recuperado a partir de http://coparoman.blogspot.com/2016/07/led-rgb.html
Pan, T., y Zhu, Y. (2018). Designing Embedded Systems with Arduino: A Fundamental Technology for Makers. Springer Singapore. Recuperado a partir de //www.springer.com/la/book/9789811044175
Purdum, J. (2012). Beginning C for Arduino: Learn C Programming for the Arduino. Apress. Recuperado a partir de //www.springer.com/us/book/9781430247760
Russell, D. (2010). Introduction to Embedded Systems: Using ANSI C and the Arduino Development Environment. Morgan y Claypool. Recuperado a partir de http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6813318
Tian, L., Li, M., Zhang, G., Zhao, J., y Chen, Y. Q. (2017). Robust human detection with super-pixel segmentation and random ferns classification using RGB-D camera. En 2017 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1542-1547). https://doi.org/10.1109/ICME.2017.8019303
Urbina, C. (2012). Cecilia Urbina: Procesadores Digitales de Señales. Recuperado a partir de http://cecilia-urbina.blogspot.com/2012/02/controladores-digitales-de-senales.html
Yamanoor, S., y Yamanoor, S. (2015). Raspberry Pi Mechatronics Projects HOTSHOT. Packt Publishing Ltd.