ARDUINO como alternativa en la enseñanza de la Química Instrumental: Analizador espectroscópico ESPECTRUINO

Main Article Content

David Sebastián Chuquer Sola

Abstract

The limited resources existing in Latin American Universities make it difficult to acquire and maintain equipment for chemical analysis in general. Given this, the use of the ARDUINO free software platform in the area of ​​chemistry emerges as an interesting and novel alternative that makes it possible to make up for this shortcoming. The research details the development of ESPECTRUINO, a system for the analysis of absorbance, fluorescence, and light scattering in chemical samples based on ARDUINO. The Challenge-Based Learning (CBL) paradigm is used so that undergraduate students (without preliminary programming knowledge) generate the described system. The electronic design, physical design, programming code, and system performance in chemical applications are detailed. The investment made for the acquisition of the equipment components was 38.55 USD. The results were satisfactory in all aspects evaluated, performing calibrations with Pearson correlation coefficients greater than 0.94 and generating measurements statistically similar to commercial equipment.

Downloads

Download data is not yet available.

Article Details

How to Cite
Chuquer Sola D. S. (2024). ARDUINO como alternativa en la enseñanza de la Química Instrumental: Analizador espectroscópico ESPECTRUINO. AXIOMA, 1(31), 80-86. https://doi.org/10.26621/ra.v1i31.944
Section
CIENCIAS BIOLÓGICAS Y AFINES

References

Abdul, A., Abdul, A., & Mohd, N. (2022). Development of a Portable Spectrophotometer Employing Arduino Microcontroller System for Pollutant Analysis. Proceedings of Science and Mathematics, 6.
Grinias, J. P., Whitfield, J. T., Guetschow, E. D., & Kennedy, R. T. (2016). An Inexpensive, Open-Source USB Arduino Data Acquisition Device for Chemical Instrumentation. Journal of Chemical Education, 93(7), 1316–1319. https://doi.org/10.1021/acs.jchemed.6b00262
Kubínová, Š., & Šlégr, J. (2015). ChemDuino: Adapting Arduino for Low-Cost Chemical Measurements in Lecture and Laboratory. Journal of Chemical Education, 92(10), 1751–1753. https://doi.org/10.1021/ed5008102
Lledó, E. (2012). Diseño de un sistema de control domótico basado en la plataforma Arduino. Universitat Politècnica de València.
Postolache, O., Girao, P., Pereira, M., & Ramos, H. (n.d.). An IR turbidity sensor: design and application [virtual instrument]. IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276), 1, 535–539. https://doi.org/10.1109/IMTC.2002.1006899
Román, C., Segura, L., Loza, D., Dabirian, R. (2016). Construction of an Open Source Based Low Cost. ITECKNE Innovación En Investigación En Ingeniería, 13, 17–22. http://www.scielo.org.co/pdf/itec/v13n1/v13n1a03.pdf
Sánchez, E., Inzunza, S., & Ramirez, G. (2014). Probabilidad y Estadística II. Grupo Editorial Patria.
Sandoval, M. J., Mandolesi, M. E., & Cura, R. O. (2013). Teaching Strategies to Teach Chemistry in Higher Education. Educación y Educadores, 16(1), 126–138. https://doi.org/10.5294/edu.2013.16.1.8
Skoog, D., West, D., Holler, J., & Crouch, S. (2014). Fundamentos de Química Analítica. CENGAGE Learning.