Actividades hipoglicéticas y antioxidantes in vitro de algunas plantasmedicinales utilizadas en el tratamiento de la diabetes en el sur del Ecuador
Main Article Content
Abstract
In the course of identifying promissory plants with hypoglycemic and antioxidant activities we evaluated the α-glucosidase and α-amylase inhibitory activities, the total soluble phenolic content (TSPC), the free radicals (DPPH, ABTS) scavenging activity and the linoleic autoxidation inhibitory capacity, of twelve plants used in traditional medicine of Ecuador: Siparuna eggersi (Monte de oso), Croton wagneri(Moshquera), Ilex guayusa (Guayusa), Baccharis genistelloides (Tres filos), Neonelsonia acuminate(Zanahoria blanca), Oreocallis grandiflora (Cucharillo), Verbena litoralis (Verbena), Justicia colorata(Insulina), Artocarpus altilis (Fruto del pan), Adiantun poiretii (Culantrillo), Costus comosus (Caña agria) and Piper crassinervium (Guabiduca).The study has shown that O. grandiflora was superior in comparison to the others plants, especially, in terms of its inhibitory activity on α-glucosidase (IC50 = 2.8 ± 0.4 μg/mL) and α-amylase (IC50 = 161.5 ± 1.3 μg/mL), as well as for free radicals (DPPH, ABTS) scavenging activity (IC50-DPPH = 9.9 ± 0.06 μg/mL; IC50-TEAC = 6.6 ± 0.55 μg/mL). On the other hand, A. altilishad the major linoleic autoxidation inhibitory capacity (IC50-β-CLAMS = 3.1 ± 0.20 μg/mL), and O. grandifloraagain had the highest value of total soluble phenolic content (TSPC = 185.9 ± 0.09 GAEs/g extract). These findings suggest that O. grandiflora might be considered as an alternative enzyme inhibitory and antioxidative agent for the treatment of diabetes mellitus.
Downloads
Article Details
Con la finalidad de contar con un tipo de licencia más abierta en el espectro que ofrece Creative Commons, a partir de diciembre de 2022 desde el número 27, AXIOMA asume la Licencia Creative Commons 4.0 de Reconocimiento-NoComercial-CompartirIgual 4.0(CC BY-NC-SA 4.0). Tanto el sitio web como los artículos en sus diferentes formatos, reflejan esta información.
Hasta el mes de noviembre de 2022 con el número 26, la revista AXIOMA asumió una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0). Los artículos contenidos en cada número hasta el 26, cuentan con esta licencia y su descripción se conserva en el portal de nuestra revista.
Atribución-NoComercial-SinDerivadas
CC BY-NC-ND
AXIOMA- Revista Científica de Investigación, Docencia y Proyección Social
References
Akhter, F., Hashim, A., Khan, M. S., Ahmad, S., Iqbal, D., Srivastava, A. K., & Siddiqui, M. H. (2013). Antioxidant, α-amylase inhibitory and oxidative DNA damage protective property of Boerhaavia diffusa (Linn.) root. South African Journal of Botany, 88, 265-272.
Alarcón-Aguilar, F. J., Roman-Ramos, R., Flores-Sánchez, J. L., & Aguirre-García, F. (2002). Investigation on the Hypoglycaemic Effects of Extracts of Four Mexican Medicinal Plants in Normal and Alloxan-diabetic Mice. Phytotheraphy Research, 16, 383-386.
Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatement of diabetes. Journal of Ethnopharmacology, 99, 325-348.
Bailey, C. J. (2003). New approaches to the pharmacotherapy of diabetes. In J. C. Pickup & G. William (Eds.), Textbook of Diabetes (Third ed., Vol. 2, pp. 73.71-73.21). UK: Blackwell Science Ltd.
Bejár, E., Russman, R., Roa, C., & Sharon, D. (2002). Medicinal Herbs of Southern Ecuador: A field guide to the medicinal plants of Vilcabamba. California. Spring Vallety
Bhat, M., Zinjarde, S. S., Bhargava, S. Y., Kumar, A. R., & Joshi, B. N. (2008). Antidiabetic Indian Plants: a Good Source of Potent Amylase Inhibitors. eCAM Advance Access published, 1-6.
Buenger, J., Ackermann, H., Jentzsch, A., Mehling, A., Pfitzner, I., Reiffen, K. A., Wollenweber, U. (2005). An interlaboratory comparison of methods used to assess antioxidant potentials. International Journal of Xosmetic Science, 28, 135-146.
Bussmann, R. W., & Sharon, D. (2006). Traditional medicinal plant use in Loja province, Southern Ecuador. Journal of Ethnobiology and Ethnomedicine, 2(44).
Conforti, F., Statti, G., Loizzo, M. R., Sacchetti, G., Poli, F., & Menichini, F. (2005). In Vitro Antioxidant effect and Inhibition of a-amylase of two varieties of Amaranths caudatus Seeds. Biological and Pharmaceutical Bulletin, 28(6), 1098-1102.
Cunningham, J. (1998). Micronutrients as nutriceutical interventions in diabetes mellitus. Journal of the American College of Nutrition, 17, 7-12.
Deutschländer, M. S., Lall, N., Venter, M. V. d., & Dewanjee, S. (2012). The hypoglycemic activity of Euclea undulata Thumb. var. myrtina (Ebenaceae) root bark evaluated in a streptozotocin-nicotinamide induced type 2 diabetes rat model. South African Journal of Botany, 80, 9-12.
Duarte-Almeida, J. M., Negri, G., Salatino, A., Carvalho, J. E. d., & Lajolo, F. M. (2007). Antiproliferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum) juice. Phytochemistry, (68), 1165-1171.
Duarte-Almeida, J. M., Santos, R. J. d., Genovese, M. I., & Lajolo, F. M. (2006). Avaliacão da atividade antioxidante utilizando sistema β-caroteno/ácido linoléico e método de seqúestro de radicais DPPH•. Ciencia e Tecnologia de Alimentos, 26(2), 446-452.
Fujisawa, T., Ikegami, H., Inoue, K., Kawabata, Y., & Ogihara, T. (2005). Effect of two a-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdomina symptoms. Metabolism Clinical and Experimental, 54, 387-390.
Hasenah, A., Houghton, P. J., & Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with paricular reference to Phyllanthus amarus. Journal of Ethnopharmacology,107, 449-455.
Hernandez-Galicia, E., Aguilar-Contreras, A., Aguilar-Santamaria, L., Roman-Ramos, R., Chavez-Miranda, A. A., García-Vega, L. M., Flores-Saenz, J.L., Alarcón-Aguilar, F. J. (2002). Studies on hypoglycemic activity of mexican medicinal plants. Proceedings of the Wester Pharmacology Society, (45), 118-124.
Huan-xia, Z., Hai-sheng, Z., & Shu-fang, Y. (2014). Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Science and Human Wellness, 3(3-4), 183-190
Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2006). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology, 4(5).
Kaleem, M., Asif, M., Ahmed, Q. U., & Bano, B. (2006). Antidiabetic and antioxidant activity of Annona squamosa extracto in streptozotocin-induced diabetic rats. Singapore Medical Journal, 47(8), 670.
Kwon, Y., Apostolidis, E., & Shetty, K. (2007). Evaluación of pepper (Capsicum Annuum) for managemente of diabetes and hypertension. Journal of Food Biochemistry, 30, 699-717.
Marles, R. J., & Farnsworth, N. (1996). Diabetes Mellitus: Report of a WHO Study Group, 1985. Protocol Journal of Botanical Medicine, 1(3), 85-135.
Liu, Y., Zhong, X., Ding, Y., Ren, L., Bai, T., Liu, M., Guo, Y., Guo, Q., Zhang, Y, Yang, J., & Zhang, Y., (2017). Inhibition of voltage-dependent potassium channels mediates cAMP-potentiated insulin secreteion in rat pancreatic β cells. Islets, 9(12), 11-18.
Malviya, N., Jain, S. & Malviya, S. (2010) Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica, 67(2):113–118.
McCue, P., Kwon, Y., & Shetty, K. (2004). Anti-amylase, anti-glucosidase and anti-angiotensin I-converting enzyme potential of selected foods. Journal of Food Biochemistry, 29, 278-294.
Miguel, M., Nunes, S., Dandlen, S., Cavaco, A., & Antunes, M. (2014). Phenols, flavonoids and antioxidant activity of aqueous and methanolic extracts of propolis (Apis mellifera L.) from Algarve, South Portugal. Food Science and Technology, 34(1), 16-23.
Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219.
Onal, S., Timur, S., Okutucu, B., & Zihnioglu, F. (2005). Inhibition of a-Glucosidase by Aqueous Extracts of Some Potent Antidiabetic Medicinal Herbs. Preparative Biochemistry & Biotechnology, 35, 29-36.
PFN-133, I. d. P. (2006). Bioactividad de aceites esenciales y extractos de plantas medicinales y aromáticas de la Región Sur del Ecuador. Loja-Ecuador: Universidad Técnica Particular de Loja.
Rao, B. K., Sudarshan, P. R., Rajasekhar, M. D., Nagaraju, N., & Rao, C. A. (2002). Antidiabetic activity of Terminalia pallida fruit in alloxan induced diabetic rats. Journal of Ethnopharmacology, 85, 169-172.
Shai, L. J., Masoko, P., Mokgotho, M. P., Magano, S. R., Mogale, A. M., Boaduo, N., & Eloff, J. N. (2010). Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South African Journal of Botany, 76, 465-470.
Shim, Y.-J., Doo, H.-K., Ahn, S.-Y., Kim, Y.-S., Seong, J.-K., Park, I.-S., & Min, B.-H. (2003). Inhibitory effect of aqueous extracto from the gall of Rhus Chinensis on alpha-glucosidase activity and postprandial blood glucose. Journal of Ethnopharmacology, 85(2-3), 283-287.
Soumyanath, A. (2006). Traditional Medicines for Modern Times. Antidiabetic Plants. USA: CRC Press
Takahiro, T., & Takeshi, T. (2006). Bureau Patent No. W.I.P.O.I.
Tene, V., Malagón, O., Finzi, P. V., Vidari, G., Armijos, C., & Zaragoza, T. (2007). An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. Journal of Ethnopharmacology,111(63-81).
Zengin, G., Sarikurkcu, C., Gunes, E., Uysal, A.,Ceylan, R., Uysal, S., Güngör, H., & Aktümsek, A. (2015). Two Ganoderma species: Profiling of phenolic compounds by HPLC- DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to Diabetes mellitus, Alzheimer’s disease and skin disorders. Food & Function, 6(8), 2794-2802.