Síntesis de un composito pollucita/ferrihidrita/hematita: pellets para la adsorción de fosfatos a partir de agua residual sintética

##plugins.themes.bootstrap3.article.main##

Resumo

Ante el aumento exponencial de la eutrofización resulta necesario el desarrollo de tecnologías orientadas al tratamiento terciario de aguas residuales hasta llegar a niveles según las diferentes regulaciones a nivel mundial. Es así como en este estudio se presenta información relevante sobre la aplicación de una moscovita natural  para la obtención de un composito que permita reducir la concentración de fosfato en soluciones acuosas. De esta forma ha sido posible obtener un composito pollucita/ferrihidrita/hematita en forma de pellets como principales fases mineralógicas. De esta forma se llevó a cabo una amplia variedad de pruebas experimentales en batch para valorar la efectividad de la adsorción de fosfatos por parte de la muscovita en polvo (P1M2—Fe—Al) y del composito pollucita/ferrihidrita/hematita (pellets). La adsorción tuvo lugar mediante adsorción física y química; adicionalmente, los ensayos de fraccionamiento de fosfato permitieron corroborar los mecanismos de adsorción propuestos mediante atracción electrostática y mediante reacciones de complejación monodentada y bidentada. Además, la adsorción de fosfato es viable en condiciones normales del agua residual tratada, toda vez que el adsorbente no requiere ajuste de pH. El adsorbente en pellets presentó una adsorción relativamente lenta, ya que al parecer la difusión intraparticular es el mecanismo principal que govierna la adsorción de fosfato. Siendo así que en dos horas de adsorción fue posible adsorber el 50% de fosfato. El adsorbente en polvo tuvo una mejor adsorción en comparación con los pellets, toda vez que con la calcinación la porosidad se bloquea los canales de acceso para la unión del fosfato con los grupos oxi hidróxido de hierro y aluminio. La regeneración de los pellets fue limitada por lo que se evidenció la posibilidad de la disposición final de este adsorbente como mejorador de suelos, aportando nutrientes para el crecimiento de plantas. Así el uso de los composito pollucita/ferrihidrita/hematita puede contribuir a solventar la problemática ligada a las altas concentraciones de nutrientes en el agua residual tratada y por otra parte a la recuperación de fosfatos que pueden ser añadido al suelo.

Downloads

Não há dados estatísticos.

##plugins.themes.bootstrap3.article.details##

Como Citar
GuayaD., JiménezR., & AngamarcaA. (2023). Síntesis de un composito pollucita/ferrihidrita/hematita: pellets para la adsorción de fosfatos a partir de agua residual sintética. AXIOMA, 1(28), 24-32. https://doi.org/10.26621/ra.v1i28.867
Seção
CIENCIAS NATURALES, MATEMÁTICAS Y ESTADÍSTICA

Referências

Albayati, T. M., & Jassam, A. A. A. (2019). Synthesis and characterization of mesoporous materials as a carrier and release of prednisolone in drug delivery system. Journal of Drug Delivery Science and Technology, 53, 101176. https://doi.org/https://doi.org/10.1016/j.jddst.2019.101176
Albukhari, S. M., Salam, M. A., & Abukhadra, M. R. (2021). Effective retention of inorganic Selenium ions (Se (VI) and Se (IV)) using novel sodalite structures from muscovite; characterization and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 120, 116–126. https://doi.org/https://doi.org/10.1016/j.jtice.2021.02.026
Awad, A. M., Shaikh, S. M. R., Jalab, R., Gulied, M. H., Nasser, M. S., Benamor, A., & Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, 228, 115719. https://doi.org/https://doi.org/10.1016/j.seppur.2019.115719
Awual, Md. R., El-Safty, S. A., & Jyo, A. (2011). Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent. Journal of Environmental Sciences, 23(12), 1947–1954. https://doi.org/https://doi.org/10.1016/S1001-0742(10)60645-6
Bacelo, H., Pintor, A. M. A., Santos, S. C. R., Boaventura, R. A. R., & Botelho, C. M. S. (2020). Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal, 381, 122566. https://doi.org/https://doi.org/10.1016/j.cej.2019.122566
Buzetzky, D., Nagy, N. M., & Kónya, J. (2017). Use of La-, Ce-, Y-, Fe- bentonites for removing phosphate ions from aqueous media. Periodica Polytechnica Chemical Engineering, 61(1), 27–32. https://doi.org/10.3311/PPch.9871
Eden, C. L., & Daramola, M. O. (2021). Evaluation of silica sodalite infused polysulfone mixed matrix membranes during H2/CO2 separation. Materials Today: Proceedings, 38, 522–527. https://doi.org/https://doi.org/10.1016/j.matpr.2020.02.393
Guaya, D., Cobos, H., Camacho, J., López, C. M., Valderrama, C., & Cortina, J. L. (2022). LTA and FAU-X Iron-Enriched Zeolites: Use for Phosphate Removal from Aqueous Medium. In Materials (Vol. 15, Issue 15). https://doi.org/10.3390/ma15155418
Guaya, D., Cobos, H., Valderrama, C., & Cortina, J. L. (2022). Effect of Mn2+/Zn2+/Fe3+ Oxy(Hydroxide) Nanoparticles Doping onto Mg-Al-LDH on the Phosphate Removal Capacity from Simulated Wastewater. In Nanomaterials (Vol. 12, Issue 20). https://doi.org/10.3390/nano12203680
Guaya, D., Jiménez, R., Sarango, J., Valderrama, C., & Cortina, J. L. (2021). Iron-doped natural clays: Low-cost inorganic adsorbents for phosphate recovering from simulated urban treated wastewater. Journal of Water Process Engineering, 43, 102274. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102274
Guaya, D., Maza, L., Angamarca, A., Mendoza, E., García, L., Valderrama, C., & Cortina, J. L. (2022). Fe3+/Mn2+ (Oxy)Hydroxide Nanoparticles Loaded onto Muscovite/Zeolite Composites (Powder, Pellets and Monoliths): Phosphate Carriers from Urban Wastewater to Soil. Nanomaterials, 12(21). https://doi.org/10.3390/nano12213848
Guaya, D., Valderrama, C., Farran, A., Armijos, C., & Cortina, J. L. (2015). Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal, 271, 204–213. https://doi.org/10.1016/j.cej.2015.03.003
Guaya, D., Valderrama, C., Farran, A., & Cortina, J. L. (2016a). Modification of a natural zeolite with Fe(III) for simultaneous phosphate and ammonium removal from aqueous solutions. Journal of Chemical Technology and Biotechnology, 91(6), 1737–1746. https://doi.org/10.1002/jctb.4763
Guaya, D., Valderrama, C., Farran, A., & Cortina, J. L. (2016b). Modification of a natural zeolite with Fe(III) for simultaneous phosphate and ammonium removal from aqueous solutions. Journal of Chemical Technology & Biotechnology, 91(6), 1737–1746. https://doi.org/https://doi.org/10.1002/jctb.4763
Guaya, D., Valderrama, C., Farran, A., & Cortina, J. L. (2017). Simultaneous nutrients (N,P) removal by using a hybrid inorganic sorbent impregnated with hydrated manganese oxide. Journal of Environmental Chemical Engineering, 5(2), 1516–1525. https://doi.org/10.1016/j.jece.2017.02.030
Hosseini, S., Moghaddas, H., Masoudi Soltani, S., & Kheawhom, S. (2020). Technological Applications of Honeycomb Monoliths in Environmental Processes: A review. Process Safety and Environmental Protection, 133, 286–300. https://doi.org/https://doi.org/10.1016/j.psep.2019.11.020
Karimi, L., & Salem, a. (2011). The role of bentonite particle size distribution on kinetic of cation exchange capacity. Journal of Industrial and Engineering Chemistry, 17(1), 90–95. https://doi.org/10.1016/j.jiec.2010.12.002
Khan, F., & Ansari, A. A. (2005). Eutrophication: an ecological vision. The Botanical Review, 71(4), 449–482.
Kumar, M. M., & Jena, H. (2022). Direct single-step synthesis of phase pure zeolite Na–P1, hydroxy sodalite and analcime from coal fly ash and assessment of their Cs+ and Sr2+ removal efficiencies. Microporous and Mesoporous Materials, 333, 111738. https://doi.org/https://doi.org/10.1016/j.micromeso.2022.111738
Liang, X., Zang, Y., Xu, Y., Tan, X., Hou, W., Wang, L., & Sun, Y. (2013). Sorption of metal cations on layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433, 122–131. https://doi.org/https://doi.org/10.1016/j.colsurfa.2013.05.006
M.H. McCrady. American Journal of Public Health and the Nations Health. (2011). Standard methods for the examination of water and wastewater (12th ed.).
Moharami, S., & Jalali, M. (2013a). Removal of phosphorus from aqueous solution by Iranian natural adsorbents. Chemical Engineering Journal, 223, 328–339. https://doi.org/https://doi.org/10.1016/j.cej.2013.02.114
Moharami, S., & Jalali, M. (2013b). Removal of phosphorus from aqueous solution by Iranian natural adsorbents. Chemical Engineering Journal, 223, 328–339. https://doi.org/10.1016/j.cej.2013.02.114
Reitzel, K., Andersen, F. Ø., Egemose, S., & Jensen, H. S. (2013). Phosphate adsorption by lanthanum modified bentonite clay in fresh and brackish water. Water Research, 47(8), 2787–2796. https://doi.org/https://doi.org/10.1016/j.watres.2013.02.051
Robben, L., & Gesing, T. M. (2013). Temperature-dependent framework–template interaction of |Na6(H2O)8|[ZnPO4]6 sodalite. Journal of Solid State Chemistry, 207, 13–20. https://doi.org/https://doi.org/10.1016/j.jssc.2013.08.022
Shanableh, A. M., & Elsergany, M. M. (2013). Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents. Journal of Environmental Science and Health, Part A, 48(2), 223–231. https://doi.org/10.1080/10934529.2012.717820
Valderrama, C., Barios, J. I., Caetano, M., Farran, A., & Cortina, J. L. (2010). Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hypercrosslinked polymeric resin (MN200). Reactive and Functional Polymers, 70(3), 142–150. https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2009.11.003
Verstraete, W., Van de Caveye, P., & Diamantis, V. (2009). Maximum use of resources present in domestic “used water.” Bioresource Technology, 100(23), 5537–5545. https://doi.org/https://doi.org/10.1016/j.biortech.2009.05.047
Weber, W.J. and Morris, J. C. (1963). No TitleKinetics of adsorption carbon from solutions. Journal Sanitary Engeering Division Proceedings.American Society of Civil Engineers, 89, 31–60.
Yeoman, S., Stephenson, T., Lester, J. N., & Perry, R. (1988). The removal of phosphorus during wastewater treatment: A review. Environmental Pollution, 49(3), 183–233. https://doi.org/10.1016/0269-7491(88)90209-6
Yin, H., Yang, C., Jia, Y., Chen, H., & Gu, X. (2018). Dual removal of phosphate and ammonium from high concentrations of aquaculture wastewaters using an efficient two-stage infiltration system. Science of the Total Environment, 635, 936–946. https://doi.org/10.1016/j.scitotenv.2018.04.218
Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., & Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62–63, 101–106. https://doi.org/10.1016/j.clay.2012.04.020